SE551: Numerical Methods for Structural Engineering

Teaching Scheme			Credits					
	Т	Р	С	Theory Marks		Practical Marks		Total
L				ESE	CE	ESE	CE	Marks
3	2	0	5	70	30	30	20	150

Course content:

Sr.	Torrige	Teaching
No.	Topics	Hrs.

1 Error analysis:

Types of errors, accuracy & precision, stability in numerical analysis.

2 **Empirical laws and curve fitting:**

Interpolation & extrapolation, general, interpolation formulae, numerical, differentiations and integration / solution of large system of linear equations, use of software, solution of banded equations.

3 Solution of non-linear algebraic and transcendental equations:

Newton-raphson iterative approach, Numerical solutions of ordinary differential equations and partial differential equations using finite difference technique, its applications to structural engineering problems.

4 **<u>Eigen Value Problems :</u>**

Solution of Eigen value problems, iterative methods & transformation methods. Applications to Structural Dynamic problems, stress problems, buckling of columns.

5 <u>Laplace transformation:</u>

Laplace transform methods, Laplace equation - Properties of harmonic functions - Fourier transform methods for Laplace equation.

6 <u>Euler's Equation:</u>

Euler's Equation - functional dependant on first order and higher order derivatives.

06

06

02

13

10

04

7 <u>Statistics:</u>

-

Correlation and regression, Principles of least squares, Introduction to design of experiments.

	Total Hrs.	45
Reference Books:		

- 1. Salvadori and Baron, "Numerical methods in Engineering".
- 2. Bathe and Wilson, "Numerical Methods in Finite Element Analysis".
- 3. Kresysig, "Advanced Mathematics".
- 4. Scarborough, "Numerical Analysis".